Search National Agricultural Library Digital Collections

NALDC Record Details:

Evaluation of the SWEEP model during high winds on the Columbia Plateau

Permanent URL:
http://handle.nal.usda.gov/10113/44763
Abstract:
A standalone version of the Wind Erosion Prediction System (WEPS) erosion submodel, the Single-event Wind Erosion Evaluation Program (SWEEP), was released in 2007. A limited number of studies exist that have evaluated SWEEP in simulating soil loss subject to different tillage systems under high winds. The objective of this study was to test SWEEP under contrasting tillage systems employed during the summer fallow phase of a winter wheat-summer fallow rotation within eastern Washington. Soil and PM10 (particulate matter ≤10 µm in diameter) loss and soil and crop residue characteristics were measured in adjacent fields managed using conventional and undercutter tillage during summer fallow in 2005 and 2006. While differences in soil surface conditions resulted in measured differences in soil and PM10 loss between the tillage treatments, SWEEP failed to simulate any difference in soil or PM10 loss between conventional and undercutter tillage. In fact, the model simulated zero erosion for all high wind events observed over the two years. The reason for the lack of simulated erosion is complex owing to the number of parameters and interaction of these parameters on erosion processes. A possible reason might be overestimation of the threshold friction velocity in SWEEP since friction velocity must exceed the threshold to initiate erosion. Although many input parameters are involved in the estimation of threshold velocity, internal empirical coefficients and equations may affect the simulation. Calibration methods might be useful in adjusting the internal coefficients and empirical equations. Additionally, the lack of uncertainty analysis is an important gap in providing reliable output from this model.
Author(s):
Feng, G. , Sharratt, B.
Subject(s):
wind erosion , prediction , simulation models , model validation , crop residues , conservation tillage , conventional tillage , fallow , winter wheat , Oregon , Washington
Format:
p. 1461-1468.
Note:
Includes references
Source:
Earth surface processes and landforms 2009 Sept. 15, v. 34,
Language:
English
Year:
2009
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.