Search National Agricultural Library Digital Collections

NALDC Record Details:

Comparative analysis of Alu repeats in primate genomes

Permanent URL:
Using bacteria artificial chromosome (BAC) end sequences (16.9 Mb) and high-quality alignments of genomic sequences (17.4 Mb), we performed a global assessment of the divergence distributions, phylogenies, and consensus sequences for Alu elements in primates including lemur, marmoset, macaque, baboon, and chimpanzee as compared to human. We found that in lemurs, Alu elements show a broader and more symmetric sequence divergence distribution, suggesting a steady rate of Alu retrotransposition activity among prosimians. In contrast, Alu elements in anthropoids show a skewed distribution shifted toward more ancient elements with continual declining rates in recent Alu activity along the hominoid lineage of evolution. Using an integrated approach combining mutation profile and insertion/deletion analyses, we identified nine novel lineage-specific Alu subfamilies in lemur (seven), marmoset (one), and baboon/macaque (one) containing multiple diagnostic mutations distinct from their human counterparts---Alu J, S, and Y subfamilies, respectively. Among these primates, we show that that the lemur has the lowest density of Alu repeats (55 repeats/Mb), while marmoset has the greatest abundance (188 repeats/Mb). We estimate that approximately 70% of lemur and 16% of marmoset Alu elements belong to lineage-specific subfamilies. Our analysis has provided an evolutionary framework for further classification and refinement of the Alu repeat phylogeny. The differences in the distribution and rates of Alu activity have played an important role in subtly reshaping the structure of primate genomes. The functional consequences of these changes among the diverse primate lineages over such short periods of evolutionary time are an important area of future investigation.
Liu, George E. , Alkan, Can , Jiang, Lu , Zhao, Shaying , Eichler, Evan E.
Primates , retrotransposons , repetitive sequences , species differences , animal genetics , mutation , bacterial artificial chromosomes , evolution , sequence alignment
p. 876-885.
Includes references
Genome research 2009 May, v. 19, no. 5
Journal Articles, USDA Authors, Peer-Reviewed
Download [PDF File]
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.