Search National Agricultural Library Digital Collections

NALDC Record Details:

Principles of integrated agricultural systems: Introduction to processes and definition

Permanent URL:
http://handle.nal.usda.gov/10113/28801
File:
Download [PDF File]
Abstract:
Agriculture has been very successful in addressing the food and fiber needs of today's world population. However, there are increasing concerns about the economic, environmental and social costs of this success. Integrated agricultural systems may provide a means to address these concerns while increasing sustainability. This paper reviews the potential for and challenges to integrated agricultural systems, evaluates different agricultural systems in a hierarchical systems framework, and provides definitions and examples for each of the systems. This paper also describes the concept of dynamic-integrated agricultural systems and calls for the development of principles to use in developing and researching integrated agricultural systems. The concepts in this paper have arisen from the first in a series of planned workshops to organize common principles, criteria and indicators across physiographic regions in integrated agricultural systems. Integrated agricultural systems have multiple enterprises that interact in space and time, resulting in a synergistic resource transfer among enterprises. Dynamic-integrated agricultural systems have multiple enterprises managed in a dynamic manner. The key difference between dynamic-integrated agricultural systems and integrated agricultural systems is in management philosophy. In an integrated agricultural system, management decisions, such as type and amount of commodities to produce, are predetermined. In a dynamic-integrated system, decisions are made at the most opportune time using the best available knowledge. We developed a hierarchical scheme for agricultural systems ranging from basic agricultural production systems, which are the simplest system with no resource flow between enterprises, to dynamic-integrated agricultural systems. As agricultural systems move up in the hierarchy, their complexity, amount of management needed, and sustainability also increases. A key aspect of sustainability is the ability to adapt to future challenges. We argue that sustainable systems need built-in flexibility to achieve this goal.
Author(s):
Hendrickson, John R. , Hanson, J.D. , Tanaka, Donald L. , Sassenrath, Gretchen
Subject(s):
integrated agricultural systems , sustainable agriculture , farming systems , farm management , agricultural policy
Format:
p. 265-271.
Note:
In the special issue: Principles of Integrated Agricultural Systems.
Source:
Renewable agriculture and food systems 2008 Dec., v. 23, no. 4
Language:
English
Year:
2008
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.