Search National Agricultural Library Digital Collections

NALDC Record Details:

Movement behavior in response to landscape structure: the role of functional grain

Permanent URL:
http://handle.nal.usda.gov/10113/27518
File:
Download [PDF File]
Abstract:
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 x 2 cm, intermediate-5 x 5 cm, and coarse-10 x 10 cm) in 50 x 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.
Author(s):
Romero, Susan , Campbell, James F. , Nechols, James R. , With, Kimberly A.
Subject(s):
Tribolium castaneum , animal models , animal behavior , landscapes
Format:
p. 39-51.
Note:
Includes references
Source:
Landscape ecology 2009 Jan., v. 24, no. 1
Language:
English
Publisher:
Dordrecht : Springer Netherlands
Year:
2009
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.