Search National Agricultural Library Digital Collections

NALDC Record Details:

Identification of QTL for Resistance to Sclerotinia Stem Rot in Soybean Plant Introduction 194639

Permanent URL:
http://handle.nal.usda.gov/10113/23721
Abstract:
Sclerotinia stem rot of soybean [Glycine max (L.) Merr.], caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a difficult disease to manage, although some gains have been made through breeding for quantitative resistance. The objective of the present study was to map quantitative trait loci (QTL) controlling partial resistance to Sclerotinia stem rot from the soybean plant introduction (PI) 194639. The resistance QTL were mapped in a population of 155 F4:5 recombinant inbred lines (RILs) developed from the hybridization of the partially resistant parent, PI 194639, to the susceptible cultivar Merit. The population was evaluated for Sclerotinia stem rot resistance using a cut stem inoculation technique and was genotyped with 134 simple sequence repeat (SSR) markers. Broad-sense heritability of lesion length (LL) after inoculation with the cut stem technique in the population was 0.57. Two putative QTL-controlling LL were identified by composite interval mapping (CIM) and mapped to linkage groups (LGs) A2 and B2, with likelihood of odds scores of 5.6 and 3.5, respectively. The LG A2 QTL was linked to the marker Sat_138 and explained 12.1% of the phenotypic variation for LL. The LG B2 QTL was proximal to the marker Satt126 and explained 11.2% of the phenotypic variance. Two minor QTL also were mapped onto LGs K and L, explaining 5.5% of the total phenotypic variation. A multivariate model that included all significant QTL explained 27% of the observed phenotypic variation of LL. These results suggest that SSR markers associated with resistance QTL mapped in this study for Sclerotinia stem rot resistance may be useful for marker-assisted breeding programs in soybean.
Author(s):
Vuong, T.D. , Diers, B.W. , Hartman, G.L.
Subject(s):
Glycine max , soybeans , Sclerotinia sclerotiorum , plant rots , disease resistance , genetic resistance , quantitative trait loci , genotype , plant breeding , chromosome mapping , inbred lines , microsatellite repeats , genetic markers , heritability , disease severity , phenotypic variation
Format:
p. 2209-2214.
Note:
Includes references
Source:
Crop science 2008 Nov-Dec, v. 48, no. 6
Language:
English
Year:
2008
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.