Search National Agricultural Library Digital Collections

NALDC Record Details:

Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels

Permanent URL:
http://handle.nal.usda.gov/10113/17520
Abstract:
Early ventures into site-specific management involved fertilizer management decisions based on soil chemical properties characterized by some form of grid sampling. This is both labor and capital intensive and practitioners quickly began investigating other methods to get a measure of spatial variability. Aerial photographs, which were mainly used to evaluate and assess crop status, allow for the collection of whole-field data at relatively low cost. Our objective is to determine what relationships exist between aerial spectral data and intensive grid soil test results and whether this information can be used to improve future soil sampling strategies. Soil-test organic matter (OM) and Bray-1 P concentrations were measured on soil samples taken using an alternating 12.2- by 24.4-m grid in late March 1994 from a quarter section under center pivot irrigation. Spectral data were collected in the spring of 1996 prior to planting using a multispectral network of digital cameras. Correlations of brightness values from the blue, green, and NIR bands with both OM and Bray-1 P were significant, but relatively low. Normality tests revealed that brightness values for the spectral data sets were generally evenly distributed while those of the soil test OM and Bray-1 P were positively skewed. Many of the very high soil-test data values were due to past management. When those values were removed from the database, greater correlations between spectral data and soil test data were obtained. These results substantiated that aerial imagery can be used to improve sampling strategies, but it must be used in conjunction with existing knowledge and past management histories.
Author(s):
Varvel, G.E. , Schlemmer, M.R. , Schepers, J.S.
Subject(s):
spectral analysis , image analysis , aerial photography , soil organic matter , phosphorus , soil test values , soil analysis , sampling , soil chemical properties , Nebraska
Format:
p. 291-300.
Note:
Includes references
Source:
Precision agriculture 1999 Nov., v. 1, no. 3
Language:
English
Year:
1999
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.